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Chemical reactions with nonlinear kinetic behavior can give rise to a remarkable set of spatiotemporal
phenomena. These include periodic and chaotic changes in concentration, traveling waves of chemical
reactivity, and stationary spatial (Turing) patterns. Although chemists were initially skeptical of the existence
and the relevance of these phenomena, much progress has been made in the past two decades in characterizing,
designing, modeling, and understanding them. Several nonlinear dynamical phenomena in chemical systems
provide simpler analogues of behaviors found in biological systems.

I. Introduction

If one were to show a freshman chemistry class two beakers
of solution and suggest that after the solutions were mixed the
color of the resulting solution would oscillate back and forth
between yellow and blue, or that a petri dish full of the stuff
would begin to develop concentric rings of blue in an initially
homogeneous red bulk, one would be met with considerable
skepticism, to say the least. Making the same suggestion to a
group of elementary school children turns out to evoke a rather
different and more rewarding reactionscuriosity to see these
fascinating and beautiful phenomena and eagerness to under-
stand how they come about.
The history of nonlinear chemical dynamics, a field in which

the objects of study are chemical reactions that display such
phenomena as periodic or chaotic temporal oscillation and
spatial pattern formation, resembles a progression, or perhaps
we should say a retrogression, from the freshman mindset
described above to that of the elementary school child.
Published observations of chemical oscillations date back at least
to the early nineteenth century,1 and the discovery of periodic
precipitation patterns2 toward the end of the century was
followed by the development of a remarkably accurate formula
for the velocity of propagation of chemical waves3 in 1906. By
the early 1920s, Lotka4 had developed a simple model, based
on two sequential autocatalytic reactions, that gives sustained
oscillations, and Bray5 had, albeit serendipitously, discovered
the first homogeneous chemical oscillator, the iodate-catalyzed
decomposition of hydrogen peroxide.
Although ecologists were quick to pick up on Lotka’s

theories, his models, as well as Bray’s experimental work, were
met with, at best, indifference by the chemical community. In
fact, Bray’s experiments were attacked6 more often than they
were embraced in the chemical literature of the next half century.
The vast majority of chemists who thought about the question
at all felt that chemical oscillation constituted a violation of
the Second Law of Thermodynamics, a sort of perpetual motion
machine in a beaker.
This notion that nonmonotonic behavior in chemical systems

is somehow contrathermodynamic7 began to break down, at least
on the theoretical side, with the work of Onsager and particularly
Prigogine and collaborators8 on nonlinear thermodynamics

beginning in the 1940s. Nevertheless, when the next experi-
mental breakthrough occurred, it still met major resistance. In
the early 1950s, B. P. Belousov, a Soviet biophysicist, was
seeking an inorganic analogue of the biochemical Krebs cycle
when he noticed that the color of a mixture consisting of bromate
and cerium ions with citric acid in sulfuric acid oscillated back
and forth, with a period of a minute or so, between colorless
and pale yellow. Belousov carefully characterized the phe-
nomenon and submitted his results, with recipes included, to a
number of journals, all of which rejected them on the grounds
that such a thing could not occur. He eventually settled, before
leaving the field, for publishing a single short abstract in the
unrefereed proceedings of a conference on radiation medicine.9

Belousov’s recipes circulated among Moscow laboratories, and
a young graduate student, Anatol Zhabotinsky, began to study
and refine the reaction. Zhabotinsky modified the reagents,
discovering that malonic acid could replace citric acid and that
the redox indicator ferroin gave a more dramatic red-blue color
change than the cerous-ceric couple.10 He characterized much
of the chemistry and showed that, in an unstirred system, the
reaction spontaneously gave rise to “target patterns” or spirals
of oxidized blue ferriin in an initially homogeneous dish of
reduced red ferroin-dominated solution (see Figure 1).11

Thanks to the path-breaking work of Zhabotinsky and a 1968
conference on biological and biochemical oscillators in Prague12

that featured talks and demonstrations on chemical oscillators
and patterns, knowledge of what had now come to be called
the Belousov-Zhabotinsky (BZ) reaction and its exotic behavior
began to filter out to the West. Prigogine’s group in Brussels
developed a simple model, dubbed the Brusselator,13 that was
more chemically realistic than Lotka’s abstract model and
showed a variety of interesting spatial and temporal phenomena,
which they called dissipative structures. The general results of
nonlinear thermodynamics, that such behavior could occur in
nonlinear systems maintained sufficiently far from equilibrium,
were now being brought to reality in specific systems.
A crucial step was the development by Field, Ko¨rös, and

Noyes (FKN) of a detailed chemical mechanism14 for the BZ
reaction. Numerical simulation of the resulting set of about 20
rate equations15 confirmed that chemical oscillation could be
explained by the same set of chemical kinetics principles that
apply to “normal” reactions. Field and Noyes16 soon managed
to abstract from the FKN mechanism a three-variable model,X Abstract published inAdVance ACS Abstracts,June 15, 1996.
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the Oregonator, that contains the essence of the chemistry while
allowing for detailed numerical and analytic investigation.
The developments of the past two decades, many of which

are discussed in this article, have included the design of more
than two dozen new chemical oscillators, mechanistic elucida-
tion of the chemistry of many oscillating reactions, the discovery
of chaos in chemical systems, better theoretical understanding
and new experimental configurations for studying chemical
waves and patterns, and a growing appreciation of the connec-
tions between the phenomena of nonlinear chemical dynamics
and the behavior of biological systems.

II. Multistability

The simplest, nontrivial behavior displayed by nonlinear
chemical systems is bistability, in which two stable steady states
coexist over a range of operating conditions. Typically studied
in a continuous-flow, stirred tank reactor (CSTR), bistable
systems undergo transitions from one state to another when
suitably perturbed or when a control parameter is varied beyond
a bistability limit. Early examples include the acidic bromate
oxidation of cerium(III),17which comprises the inorganic subset
of the BZ reaction, and the iodate oxidation of arsenite,18 a
variant of the venerable Landolt clock reaction. Many bistable
systems are now known, and the detailed reaction mechanisms
of a number have been characterized.
The iodate-arsenite reaction is perhaps unique among

nonlinear systems that exhibit bistability and chemical waves
in that it can be accurately described in terms of a single
dynamical variable.19 For the CSTR system, the one-variable
model is

where [I-]0 and [IO3-]0 are feedstream concentrations andk0

is the reciprocal residence time of the reactor (proportional to
the flow rate). The steady-state concentration of iodide as a
function of the flow rate can be easily determined by solving
the cubic equation when d[I-]/dt ) 0. Perturbations that move
the system beyond the unstable steady state (the middle solution
of the cubic equation) result in transitions from one stable state
to the other, while transitions at the bistability limits occur with
relaxation dynamics suggestive of first-order phase transitions.20

Other patterns of steady-state multiplicity are possible. A
simple modification of the CSTR feedstreams in the iodate-
arsenite system gives rise tomushroomsandisolas.21,22 Specif-
ically, a second, independent flow of solvent (buffer solution)
is introduced which causes a dilution of the reactants at long
residence times. A mushroom is comprised of two regions of
bistability, as shown in Figure 2, while an isola is just a
mushroom with its base “squeezed off”.
Although, normally, only the stable steady states are observed

in experiments, it is possible to locate and stabilize unstable
steady states. A feedback method was used by Laplante23 to
stabilize and track the unstable steady state in the iodate-
arsenite system. Ross and co-workers24 have used feedback
techniques to stabilize unstable steady states in illuminated
thermochemical systems such as the S2O6F2 and o-cresol-
phthalein reactions as well as ZnSe interference filters. Model-
independent control techniques have been recently introduced
for stabilizing unstable steady and periodic states in chaotic
systems (described in section VI).
While bistability is the most common form of multistability,

it is possible to have more than two stable steady states. One
can envision tristability arising from a quintic nonlinearity in a
one-variable system, with the three stable states separated by
two unstable states. Multistability is also not restricted to
steady-state behavior. Birhythmicity, where two different
oscillatory states are displayed over a range of operating
conditions, as well as steady-state tristability, has been observed

Figure 1. Chemical waves in the BZ reaction. Top: target patterns in a thin film of reagent (1.5 mm). Bottom: spiral waves in reagent similar to
above except less acidic. Both sequences from left to right are at 60 s intervals. Reprinted with permission from: Winfree, A. T.Prog. Theor.
Chem.1978, 4, 1. Copyright 1978 Academic Press.
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in experimental systems. In principle, multistability is possible
between all of the various combinations of steady, oscillatory,
and chaotic states, and a number of these are described in section
V.

III. Oscillatory Reactions

Although oscillatory reactions have had a long history in
chemical kinetics, the first definitive characterization of a
chemical oscillator was put forth less than 25 years ago.
Zhabotinsky’s pioneering work11 set the stage for the conceptual
breakthrough of the Field-Körös-Noyes mechanism,14 a
scheme that accounts for the oscillations of the BZ reaction in
terms of elementary steps. Three processes were proposed as
essential components of the reaction: (A) the BrO3

- oxidation
of Br- to produce HOBr and Br2, which subsequently brominate
the organic substrate, (B) the autocatalytic generation of HBrO2

with the concurrent oxidation of the metal catalyst, and (C) the
oxidation of the organic substrate by the catalyst to regenerate
Br-. The three processes take place successively to constitute
one oscillation, and the sequence is then repeated. When Br-

is consumed to a critical concentration in process A, the
autocatalysis in process B takes place; the Br- regeneration in
process C effectively “resets the clock” by returning the system
to process A.
In 1974, Field and Noyes16 proposed their distillation of the

FKN mechanism, a three-variable scheme called the Oregonator.
Used extensively for modeling the BZ reaction and as a generic
model for nonlinear oscillations, the Oregonator consists of five
irreversible steps:25

where X≡ HBrO2, Y ≡ Br-, and Z≡ Ce(IV) are the variables.
The concentration of the reactant A≡ BrO3

- is held constant
as is hydrogen ion concentration (absorbed into the rate
constants), and the “product” P≡ HOBr (which goes on to
brominate malonic acid) does not appear in the rate equations.
Because only the features essential to the dynamical behavior
are included in the model, there is the appearance (in the third
and fifth steps) of transmutation of the elements! A two-variable
reduction of the Oregonator by Tyson and Fife25 is currently in
wide use for describing the spatiotemporal behavior of the BZ
reaction (section VII).
Many modified BZ reactions have appeared over the years,

some with only minor variations and others involving major
alterations. All have served as tests of the FKN mechanism. It
came as a surprise that the metal ion catalyst could be eliminated
altogether in systems with certain aniline or phenol derivatives
as the organic substrate.26 These “uncatalyzed” BZ systems
utilize the aromatic reactant species as a one-electron transfer
agent much like the metal catalyst in the classical system.27

Perhaps even more surprising was the discovery of oscillatory
behavior in a CSTR system containing only acidic bromate,
bromide, and the metal ion catalyst.28 Remarkably, this system,
the “minimal bromate oscillator”, was predicted in modeling
studies29 of the inorganic subset of the FKN mechanism before

its experimental discovery. Some modified BZ systems have
led to questions not easily answered by the prevailing mecha-
nistic understanding. Noszticzius30 carried out experiments with
BZ solutions containing an excess of Ag+ ions such that the
Br- concentration is kept at very low levels. These and related
experiments suggest that, for certain experimental conditions,
there is an alternative “non-bromide control” mechanism for
the BZ reaction.31

While the Oregonator faithfully accounts for much of the
behavior of the BZ reaction, the chaotic behavior of this system
(discussed in section VI) defied modeling descriptions until only
recently. A new scheme, based on the FKN mechanism, has
been proposed by Gyo¨rgyi and Field32 for modeling chemical
chaos in the BZ reaction. This model includes bromomalonic
acid as a key variable, with its effect on the regeneration of
Br- providing an important additional feedback source. The
Györgyi and Field model, which comes in seven-, four-, and
three-variable versions, generates behavior in good agreement
with the experimental measurements of “low-flow rate”33 and
“high-flow rate”34 chaotic behavior.32,35 It has also been used
in modeling chaos control experiments with the BZ reaction.36

Another oscillatory reaction, also serendipitously discovered
and extensively studied over the past two decades, is the
oxidation of NADH by O2 catalyzed by horseradish peroxidase.
This and related in vivo reactions are known as peroxidase-
oxidase (PO) reactions. Damped oscillations were observed in
the PO reaction by Yamazaki et al.37 in 1965, and sustained
oscillations were found by Nakamura et al.38 in 1969. The
reaction is typically carried out with methylene blue and 2,4-
dichlorophenol added to enhance the oscillatory behavior. In
order to conserve the peroxidase enzyme, a semiopen reactor
is often used, where NADH is slowly pumped into a buffered
solution containing the enzyme plus additives, and O2 is fed by
diffusion through the solution interface.
In 1977, Degn and Olsen39 presented what is arguably the

first report of chemical chaos in a study of aperiodic oscillations
in the PO system. Strong support for this assertion has appeared
in recent studies by Olsen40and Larter41 and co-workers showing
that the chaotic behavior arises via a period-doubling cascade.
A number of mechanistic investigations of the PO reaction have
been carried out, with the most detailed being that by Aguda
and Larter.42 While the mechanism is complex and several
important intermediate species remain unidentified, progress has

Figure 2. Steady state iodide concentration in the iodate-arsenite
reaction as a function of the CSTR reciprocal residence time (propor-
tional to flow rate and given byk0 + k0′). Reprinted with permission
from ref 21. Copyright 1984 American Institute of Physics.
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been made in clarifying the dynamic roles played by these
species as well as the role of 2,4-dichlorophenol.41,43 The
essential features of the reaction are reproduced remarkably well
by a simple four-variable model proposed by Olsen.44 The
feedback arises from two autocatalytic processes involving two
radical species, one thought to be NAD• and the other denoted
“compound III”. While the Olsen model exhibits period-
doubling cascades much like those found in the recent experi-
mental studies, there is a need to connect the minimal model to
more complete mechanistic descriptions.
The “original” oscillatory reaction, the Bray reaction,5 was

perhaps an unfortunate system for inaugurating the field of
nonlinear chemical dynamics. Subject to many studies over
the years, its mechanismsfraught with the complexities of
hydroxyl radical chemistry and interfacial transportsremains
only partially understood.45 A much younger reaction, the
Briggs-Rauscher46 reaction, seems an appropriate system for
rounding out a discussion of the “early” chemical oscillators.
Discovered by two high-school teachers, it was conceived by
combining some of the reactants of two known oscillators, the
BZ and Bray reactions. The result was an oscillatory reaction
comprised of hydrogen peroxide, iodate, manganese(II), and
malonic acid which has been used extensively in dynamical
studies and has been characterized by similar reaction mecha-
nisms in independent investigations.47 In the next section, a
new phase in the study of oscillatory reactions is described:
the systematic design and characterization of chemical oscilla-
tors.

IV. New Chemical Oscillators

By the late 1970s, despite considerable theoretical progress
on the nature of chemical oscillation, the only known chemical
oscillators were either (a) biological in origin, like the glyco-
lytic48 and oxidase-peroxidase39 systems; (b) discovered ac-
cidentally, like the Bray and BZ reactions; or (c) variants26,46

of those in group b. None of these routes to finding oscillating
reactions offered much guidance to those seeking new systems
of interest, particularly systems that might lend themselves to
mechanistic study. Efforts to specify necessary and sufficient
conditions for chemical oscillation or to find new chemical
oscillators had proved surprisingly frustrating.
An important theoretical insight was provided49 by an analysis

of a simple mathematical model consisting of two “rate”
equations:

Equation 2 withk ) 0 and appropriate choices forµ andλ has
one unstable and two stable steady states forx; the system is
bistable. They variable provides a simple feedback that, for
large enough values of the feedback parameterk and the
relaxation timeτ, causes the two-variable system to oscillate
periodically. If we plot the behavior of the system at fixedµ
and τ as a function of the parametersk andλ, we obtain the
characteristic “cross-shaped phase diagram” shown in Figure
3, with regions of bistability and oscillation separating regions
in which only one of the steady states is stable.
The behavior illustrated in Figure 3 is seen in a number of

chemical systems, particularly those containing autocatalytic
reactions, when the reaction is carried out in a continuous-flow,
stirred tank reactor (CSTR).50 This device, which provides the
major experimental advance needed to create new chemical
oscillators, offers a means of maintaining a system far from

equilibrium by continuously supplying the reaction vessel with
fresh reactants and allowing reacted material to leave so as to
maintain constant volume.51

A systematic approach to designing oscillating reactions,
pioneered at Brandeis in the 1980s,52 led to the development of
literally dozens of new oscillators. The technique begins with
the identification of an autocatalytic reaction. Its behavior in a
CSTR is then studied, and a region of bistability is sought. If
such a region is found, one then seeks a feedback species, which
interacts with one or more species in the bistable system in such
a way as to narrow the region of bistability and on a time scale
long with respect to the characteristic relaxation times of the
system to its two stable steady states. This latter requirement
is equivalent to choosingτ sufficiently large in the model eqs
2 and 3, so that the system tends to follow the hysteresis loop
of the bistable system except when the feedback causes it to
jump from one of the steady states to the other. If an appropriate
feedback species can be found, then one adds increasing
amounts of that species to the input flow of the reactor until
the bistable region narrows to a point and oscillatory behavior
begins to set in.
Implementation of this approach led to the first systematically

designed chemical oscillator, the chlorite-iodate-arsenite
system.53 This discovery was soon followed by the development
of many more oscillating reactions based upon the complex
redox chemistry and autocatalytic reactions of the chlorite ion
and related oxyhalogen species. The BZ reaction and its
relatives, as well as several new systematically designed systems,
constitute the bromate family of oscillators, and many additions
to the Bray reaction have filled out the iodate group.
Oxyhalogen chemistry provided the backbone to the body

of chemical oscillators, but by the mid-1980s, arms and legs
were beginning to sprout in the form of oscillating reactions
based on the chemistry of other columns of the periodic table.
The first sulfur-based oscillator, the hydrogen peroxide-sulfide
reaction,54 was soon joined by about half a dozen other such
systems. Although the BZ reaction contains an organic species,
usually malonic acid, the key chemistry leading to oscillation
is really that of the inorganic reactants. The cobalt-catalyzed
air oxidation of benzaldehyde55 constitutes the first nonbiological
oscillator in which organic reactions play the major role. The
cerium ion in the BZ reaction proved to be a prototype for the
role of metals in chemical oscillators until nearly the end of
the decade; metal ions, if they appeared at all, served only as
catalysts. Finally, the first member of a group of oscillators

Figure 3. A schematic cross-shaped phase diagram.

dx/dt ) (-x3 - µx+ λ) - ky (2)

dy/dt ) (x- y)/τ (3)
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based on manganese chemistry was discovered.56 When it was
recognized that phosphate ion plays a crucial role in stabilizing
a key Mn(IV) intermediate, it became possible to design over
a dozen manganese-based oscillating reactions.57 Another useful
concept, which has aided in the design and analysis of many
new oscillators, is that of pH-driven oscillators.58 These are
systems in which the pH undergoes large oscillation and in
which [H+] drives the oscillation, in the sense that oscillation
ceases if the system is buffered.
Successes in designing new oscillating reactions have been

accompanied by advances in the mechanistic understanding of
these often complex reactions. While most early mechanistic
work focused on the BZ reaction,14,59more recent efforts have
yielded a variety of elementary step mechanisms60 and empirical
rate law models61 that are remarkably successful in describing
the behavior of many of the new oscillators. A general
mechanistic classification of oscillating reactions based on their
dynamics rather than their chemistry has recently been pro-
posed.62

The availability of many new oscillating reactions and
mechanisms both facilitated and made more necessary the
development of a systematic means of classifying chemical
oscillators into meaningful groups. This effort at chemical
taxonomy was aided by the formulation of the concept of a
minimal oscillator,63 defined as that member of a family of
chemical oscillators whose components are found, as reactants
or intermediates, in all members of the family. The first such
oscillator to be identified was the minimal bromate oscillator,28

bromate-bromide-metal catalyst; several others have since
been found for additional families of new oscillators. In Figure
4, we present a summary of the known chemical oscillators
grouped according to families, with linkages indicated where a
single oscillator, like the bromate-chlorite-iodide reaction,64

may be thought of as a candidate for membership in more than
one family.
Along with the enormous increase in the number and chemical

breadth of oscillating reactions has come a similar growth in
the variety of dynamical phenomena that these systems are
known to exhibit. In addition to simple periodic oscillation,

these reactions can show complex periodic behavior with many
peaks per cycle, aperiodic or chaotic oscillation, and a wide
variety of waves and spatial pattern formation. These fascinat-
ing phenomena are described in the sections that follow.

V. Coupled Systems

A single chemical reaction, with sufficiently nonlinear
kinetics, can exhibit a remarkable variety of dynamical behavior.
It is natural to ask whether coupling together two or more
oscillating or similarly complex reactions might lead to a still
richer phenomenology. Recent research indicates that the
answer is clearly in the affirmative.
The first question that must be answered in order to study

coupled chemical systems ishow they are to be coupled. A
pair of mechanical oscillators, like springs, can easily and
understandably be linked by a rigid rod or another spring. How
might one link a pair of chemical oscillators? One approach is
to think in terms of two types of couplingschemical and
physical.
A system of chemically coupled oscillators consists of a single

vessel containing the components of two (or more) subsystems,
each of which is capable of independent oscillation, that have
a key speciessreactant, product, or intermediatesin common.
The best studied example is the bromate-chlorite-iodide
reaction,64 in which the bromate-iodide65 and chlorite-iodide66
oscillators are linked through the common reactant I-. A sense
of the rich dynamical behavior which this system of three simple
inorganic ions displays can be gleaned from the dynamical phase
diagram in Figure 5.
In a physically coupled system, the subsystems reside in

different vessels but are linked by the physical transfer of
material between them. A special case involves electrical
coupling,67 in which current flows in or out of one subsystem
as a result of the chemical changes in another subsystem. A
more commonly employed configuration accomplishes the
coupling by mass transfer, usually via diffusion or facilitated
diffusion. Typically, the reaction occurring in each of the
subsystems is the same, though this is by no means necessary.

Figure 4. Taxonomy of chemical oscillators. Boxes indicate families and ovals show subfamilies. Dashed lines indicate links between families.
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What sorts of behavior do coupled systems exhibit? One
frequently observed phenomenon is entrainment, in which two
coupled oscillators adapt their motion to one another so that
they oscillate with the same frequency or with frequencies that
are related by a small whole number ratio. Figure 6 shows an
example of 1:1 entrainment in a physically coupled system
consisting of the BZ reaction run in two CSTRs that share a
common wall with an adjustable diaphragm that permits
variation of the flow between the reactors, which serves as the
coupling strength parameter.68

We observe in Figure 6 that the two oscillators are entrained
out of phase with one another: reactor 1 reaches a maximum
in redox potential when reactor 2 is at a minimum. At a
somewhat higher coupling strength, the two reactors become
entrained in phase. Any pair of physically coupled oscillators
must approach in-phase entrainment as the coupling approaches
infinity, since in this limit the two reactors become one. More
interesting, and perhaps surprising, is the fact that the system
exhibits hysteresis. As the coupling strength is decreased, the
in-phase mode persists through coupling strengths at which the
out-of-phase mode is stable. This behavior is an example of

birhythmicity, bistability between two oscillatory states, a
phenomenon that is often seen in systems of coupled oscillators.
Many forms of multistability occur in chemically coupled
systems. The bromate-chlorite-iodide reaction exhibits bi-
rhythmicity between two oscillatory modes, each of which
resembles in wave form and mean potential the oscillations seen
in one of the component systems.64 The chlorite-iodide-
arsenite-iodate reaction shows tristability among three steady
states in a CSTR,69 while the chlorite-thiosulfate-iodide-
iodine system has another kind of tristability involving one
oscillatory and two stationary states.70

In addition to birhythmicity, two different modes of oscillation
can interact in such a way as to give rise tocompound
oscillation, in which the two wave forms merge to give a single
complex periodic mode. An example of compound oscillation
in the bromate-chlorite-iodide chemically coupled system is
shown in Figure 7. Under these particular conditions, as the
flow rate is changed from a region where only one mode of
oscillation exists to a region where only the other mode is stable,
instead of either a sharp transition between modes or a
coexistence (birhythmicity) of the two, the limit cycles merge
to form a single large-amplitude oscillation that has character-
istics of both oscillatory subsystems.
Two other phenomena that occur in coupled oscillators are

worthy of note.Oscillator deathis the term given to a transition
to stationary behavior when two oscillators are linked together.
An example is shown in Figure 6 when the coupling, measured
as the ratio of the flow between reactors to the flow through
each reactor, is set atF ) 0.75. Even though each reactor would
oscillate in the absence of coupling, the coupled system reaches
a stable steady state in which one reactor is at a high potential
and the other at a low one. By turning off the coupling for
about half a period of oscillation for the uncoupled system, we
cause the system to travel halfway around its orbit and to
become locked in a complementary steady state when the
coupling is reinstated.
Just as coupling can cause oscillators to cease oscillating, it

can induce oscillation in systems that show only steady state
behavior when uncoupled. This phenomenon is known as
rhythmogenesisand was first demonstrated experimentally in
the chlorite-iodide reaction by Boukalouch et al.,71 who
physically coupled two CSTRs containing the system in the
reduced and oxidized steady states and observed periodic
oscillation in both subsystems at appropriate values of the
coupling strength.
Although we have focused on results for pairs of coupled

subsystems, it is possible to study coupled systems with larger
numbers of elements. Laplante and Erneux72 have studied the
propagation of the transition between bistable steady states in
the chlorite-iodide reaction in a system of 16 linearly coupled
CSTRs. More recently, a system of eight of these units has

Figure 5. Dynamical phase diagram of the bromate-chlorite-iodide
reaction in a CSTR in thek0(flow rate) - [I-]0 plane. Fixed inflow
concentrations: [BrO3-]0 ) 2.5× 10-3 M, [ClO2

-]0 ) 1.0× 10-4 M,
[H2SO4]0 ) 0.75 M. Symbols: open circles, low-frequency oscillatory
state; filled circles, high-frequency oscillatory state; open triangles, low
potential stationary state; filled triangles, high potential stationary state;
open squares, intermediate potential stationary state. Combinations of
two symbols imply bistability between the corresponding states.
Reprinted from ref 64.

Figure 6. Traces of Pt electrode potential in a physically coupled BZ
oscillator experiment. Bottom trace is potential V1 from reactor 1; upper
trace is potential V2 from reactor 2 shifted up by 200 mV. 0-5 min:
out-of-phase entrainment, coupling strengthF ) 0.5; 5-11 min: steady
state I,F ) 0.75. Coupling is switched off from 11 min to 11 min 40
s. 11.7-19.5 min: steady state II,F ) 0.75; 19.5-22.5 min: steady
state II,F ) 0.65; 22.5-36 min: out-of-phase entrainment,F ) 0.56.
Reprinted from ref 68.

Figure 7. Compound oscillation in the bromate-chlorite-iodide
reaction. [I-]0 ) 4 × 10-4 M, other concentrations as in Figure 5.
Reprinted from ref 64.
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been used to perform simple pattern recognition tasks.73

Understanding the behavior of large arrays of coupled nonlinear
dynamical systems has implications for a variety of problems
ranging from neural networks to the synchronization of flashing
fireflies74 to the behavior of coupled Josephson junctions.75 The
biological implications are particularly significant, since the
caricature of a living system as a collection of coupled nonlinear
chemical oscillators contains a great deal of truth.

VI. Chemical Chaos

Deterministic chaos has attracted widespread interest in the
physical and biological sciences over the past two decades. It
represents one of the three fundamental classes of dynamical
behavior (stationary, periodic, and chaotic) and, hence, is of
central importance in characterizing dynamical systems.76

Chemical systems have played a crucial role in the study of
chaos,77,78with the discovery and characterization of chemical
chaos providing some of the most convincingsand spectaculars
evidence for this important class of behavior. We will focus
on low-dimensional chaosand associated complex periodic
oscillations found in well-stirred chemical systems.
Oscillatory reactions carried out in CSTRs display a myriad

of responses as a control parameter is varied. Bifurcation points
mark the qualitative changes in dynamical behavior, such as a
transition from steady state to oscillatory behavior or from one
type of oscillations to another, and bifurcation diagrams (plots
of response vs control parameter) give a summary of the
dynamics of a system. Bifurcation diagrams for oscillatory
reactions typically display steady state behavior giving way to
oscillations followed by a return to steady state behavior. In
the oscillatory region, an intricate sequence of increasingly
complex oscillations may occur, culminating in the appearance
of chaotic behavior.
Studies of the BZ reaction by Roux79 and Swinney33,80 and

co-workers revealed a classic period-doubling sequence leading
to chaotic behavior. This route to chaos involves successive
bifurcations, each giving an oscillatory pattern with twice the
period of its predecessor. Each bifurcation occurs increasingly
close to the previous one, until a point is reached (the
accumulation point) where the period is infinite and, hence, the
oscillations aperiodic. In addition toaperiodicity, chaotic
systems also exhibitextreme sensitiVity to initial conditions,
where two systems that differ even infinitesimally in their initial
conditions evolve in time so as to diverge exponentially from
one another.
Other studies of the BZ reaction by Hudson and co-

workers34,81 found chaotic behavior interspersed in sequences
of mixed-modeoscillations. This oscillatory behavior is char-
acterized by a mixture of small- and large-amplitude oscillations
within a cycle, and a progression of patterns is observed as a
control parameter is varied. A pattern made up of one large
and one small oscillation, for example, will abruptly give way
to a pattern with one large and two small oscillations. This
pattern is then replaced by one large and three small oscillations,
and so on. Aperiodic mixtures of mixed-mode states at the
transition from one state to the next were found and charac-
terized as deterministic chaos according to a variety of
diagnostics.
The characterization of chaos in the BZ reaction relied on

the tools of dynamical systems theory76,82and was not dependent
on any particular model description. Nonetheless, there have
been many attempts to model the behavior with various
modifications of the Oregonator. One “extended” Oregonator83

did a good job of reproducing the mixed-mode oscillations
observed by Hudson, but no evidence of chaotic behavior

between the mixed-mode states could be found. An intricate
sequence of patterns involving the mixing of parent mixed-mode
states according to Farey arithmetic84 was also revealed,85 in
good agreement with the “Farey tree” found in the BZ reaction
by Maselko and Swinney.86 Another modified Oregonator was
proposed in which the stoichiometricf factor in the model was
parametrized to be a function of P.87 This scheme did a good
job of simulating “bursting patterns”, a form of mixed-mode
oscillations observed in the BZ reaction88 and in nerve impulse
propagation.89 However, no chaotic behavior could be found
in this model either. The definitive experimental evidence for
chaos in the BZ reaction and the decided lack thereof in various
“realistic” chemical models became the source of some con-
troversy over the years. The paradox was resolved in 1991 by
the model of Gyo¨rgyi and Field,32 described in section III.
Although quantitative agreement is still not at hand, there is
currently excellent qualitative agreement between experiment
and theory on chemical chaos in the BZ reaction. Recent
theoretical studies90 have also clarified the relationship between
period-doubling cascades and mixed-mode states, following
earlier analyses of discrete maps.91

A small but growing number of chemical systems are now
known to exhibit chaotic behavior. The PO reaction has been
extensively investigated over the years. Recent studies have
identified not only a period-doubling route to chaos but also
unstable periodic orbits in the chaotic attractor of the system.41

Quasiperiodicity has also been found,92 confirming earlier
modeling predictions of this behavior,93 as well as chaos arising
from period-doubling cascades of mixed-mode states.94 Other
systems exhibiting chaotic behavior include the chlorite-
thiosulfate reaction95 and the cobalt/manganese/bromide-
catalyzed autoxidations ofp-xylene and cyclohexanone.96

Although chaos is usually studied in open systems, several recent
investigations have demonstrated that transient chaos may occur
in closed systems,97,98where the changing composition of the
system as reactants are consumed serves as the bifurcation
parameter. Compelling evidence for period-doubling cascades,
quasiperiodicity, and transient chaos in the closed BZ system
has been presented,98 lending support to very early reports of
possible chaotic behavior in the batch reaction.99 The observa-
tions are also supported by recent theoretical studies of transient
chaos.100

Electrochemistry has been a very fruitful area for the study
of chaotic dynamics.101 The convenient time scales and high
signal-to-noise ratios of electrochemical oscillators offer sig-
nificant advantages for the collection and treatment of data.
Many of the studies of electrochemical chaos have utilized metal
electrodissolution reactions. Hudson and Bassett102have carried
out a series of investigations of the electrodissolution of copper
in NaCl and H2SO4 in which a number of routes to chaos were
demonstrated, such as period doubling and intermittency,
Shil’nikov chaos, and quasiperiodicity to chaos on a broken
torus. The electrodissolution of copper in H3PO4 has been
studied by Schell and Albahadily103 in which simple period
doubling as well as period doubling of mixed-mode oscillations
was found. Complex oscillations and chaos have been studied
in many other types of electrochemical processes. One system
that is particularly well characterized is the reduction of In(III)
at a hanging mercury electrode in solutions containing thio-
cyanate ion.104 Experimental studies by Koper et al.105 have
characterized the mixed-mode and chaotic oscillations found
in this system, and Koper and Gaspard106 have developed a
three-variable model that reproduces many of the dynamical
features. Studies of the electrocatalytic oxidations of formal-
dehyde, formic acid, and various alcohols have also yielded
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information about mixed-mode, quasiperiodic, and chaotic
behavior.107 An intriguing notion advanced by Schell and co-
workers108 is that cyclic voltammograms can be viewed as
parametrically forced oscillators, with the accompanying com-
plex periodic and chaotic oscillations. On varying the upper
potential limit, scans with 2, 3, 4, etc. nonrepeating cycles are
observed as well as aperiodic cycles.
New techniques for manipulating dynamical systems, orig-

inating with the Ott-Grebogi-Yorke109 (OGY) method for
controlling chaos, have stimulated a flurry of experimental
applications.110 The OGY method provides a simple means for
stabilizing unstable periodic states by supplying tiny but precise
perturbations to the system. A chaotic attractor is made up of
an infinite number of unstable periodic orbits, each saddlelike
in character (in low-dimensional systems). It is straightforward
to perturb the system in such a way that it relaxes in the
attracting direction of the saddle, thus stabilizing the periodic
state when such perturbations are repeated each cycle. The
OGY method has been applied to a wide range of dynamical
systems, with unstable periodic orbits stabilized in magneto-
elastic strips,111 electronic circuits,112 and laser systems.113

A reduction of the OGY method based on a map description
can be used for stabilizing low-dimensional systems.114 Most
of the experimental applications of control have used some form
of this reduction, usually as simple proportional feedback. The
map-based method was used for controlling chaos in the BZ
reaction,36 in which the regular oscillations of the period-1 and
period-2 orbits were stabilized out of the chaotic behavior.
Figure 8 shows bromide electrode measurements of the stabi-
lized period-2 limit cycle embedded in the chaotic attractor.
Periodic states in a chaotic electrochemical system have been
stabilized by Rollins and co-workers115 using a recursive
extension of the proportional feedback method. Hjelmfelt and
Ross116 stabilized unstable steady states in the oscillatory
chlorite-iodide reaction, where a control parameter was pro-
portionally varied relative to a particular species concentration.
A continuous feedback method proposed by Pyragas117has also
been used to stabilize periodic oscillations in the BZ reaction.118

Feedback methods can be used not only to stabilize unstable
states but also to track these states as operating conditions

change.119 By combining the map-based stabilization algorithm
with a stability analysis subroutine, the locus of an unstable
steady or periodic state can be determined as a function of the
control parameter. This hybrid method has been used to track
unstable orbits in the BZ reaction through a period-doubling
sequence.120 As in the previous methods, only tiny perturbations
to the system are necessary to stabilize the states, and these
states are therefore representative of the original autonomous
system. Tracking also allows the stabilization of unstable states
outside the chaotic regime, such as the unstable period-1 orbit
in the stable period-2 regime. A particular unstable state can
be followed through a complete bifurcation sequencesfrom the
point it becomes unstable to the point it regains stability.
Stabilizing and tracking states with more than one unstable

direction remains an important challenge. Such states are
common in spatially extended systems, and techniques beyond
those developed for low-dimensional systems are required for
controlling spatiotemporal chaos. A general method for stabi-
lizing and characterizing states with many unstable degrees of
freedom has recently been proposed,121 where an explicit
connection is made between phase space approaches, such as
the OGY method, and classical linear control theory. The
algorithm has been used to stabilize and characterize an unstable
state found to have six unstable and three stable degrees of
freedom. The method has also been used for stabilizing and
tracking unstable Turing patterns through spatiotemporal chaos.122

When coupled with the tracking technique, the stabilization
algorithm provides a model-independent continuation method
for bifurcation analyses of experimental systems, similar in
capability to the continuation method AUTO123 for model
systems.

VII. Chemical Waves

Propagating fronts are ubiquitous in naturesjust imagine
expanding bacteria colonies, advancing regions of metal cor-
rosion, or infectious diseases spreading through populations.
Many types of fronts, even those involving populations of
microorganisms or individuals, can be formulated in terms of
reaction-diffusion processes. Propagatingreaction-diffusion
fronts,124 found in many autocatalytic and oscillatory reactions,
serve as ideal model systems for such processes. Fronts
typically propagate with a constant velocity and wave form,
converting reactants that lie ahead into products which are left
behind. The bulk of the chemical reaction occurs within a
narrow reaction zone, similar to a propagating flamesbut with
no heat.
Reaction-diffusion fronts with quadratic nonlinearities have

a long history,3 first formally studied in 1937 by Fisher125 and,
independently, by Kolmogorov et al.126 Quadratic fronts
described by the Fisher-Kolmogorov equation have been the
prototype over the years for propagating reaction-diffusion
waves. It is now known, however, that quadratic nonlinearities
cannot account for some features of propagating fronts, and
cubic or higher-order nonlinearities are sometimes essential.
Insights into the similarities and differences of the quadratic
and cubic forms can be gained by examining the mixed-order
reaction-diffusion equation.127 An important difference is that
the cubic form yields an analytical solution for wave speed and
concentration profile,128 while no analytical solution is known
for the quadratic form. Fronts in the iodate-arsenite system,
arising primarily from cubic autocatalysis, can be described in
terms of an analytical solution of the corresponding reaction-
diffusion equation.19

Many autocatalytic reactions are now known to support
propagating fronts, and several have been characterized in terms
of their reaction-diffusion equations. Fronts in the ferroin-

Figure 8. Stabilized period-2 limit cycle embedded in the strange
attractor of the Belousov-Zhabotinsky reaction. Scattered blue points
show chaotic trajectory in time-delay phase space; solid red curve shows
period-2 limit cycle stabilized by using a map-based control algorithm.
Measurements represent the potential of a bromide ion selective
electrode. Reprinted with permission from ref 36. Copyright 1993
Macmillan.
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bromate system, for example, can be described by a quadratic
reaction-diffusion equation analogous to the Fisher-Kol-
mogorov equation.129,130 Fronts in the HNO3 oxidations of
Fe(II) and ferroin have also been characterized,131where, again,
the reaction-diffusion equation has a quadratic nonlinearity.132

Nagypal and co-workers133 have developed a large family of
front systems based on acid- and base-catalyzed autocatalytic
reactions. A particularly intriguing type of front has been
studied in reaction mixtures supporting RNA replication, where
mutant strains of RNA compete for nucleotide monomers.134

Lateral instabilities occur in cubic autocatalysis fronts when
the ratio of the reactant and autocatalyst diffusivities exceeds a
critical value.135 The patterned fronts are reminiscent of cellular
flames, and remarkably complex behaviorsincluding period
doubling and chaossis displayed at certain diffusivity ratios.
An example of a four-cell front is shown in Figure 9, where
the concentration profile of the autocatalyst displays distinct
“peaks and valleys”. The front instability requires at least a
cubic nonlinearity, and it is suppressed when there is more than
a slight quadratic contribution to the rate law. Fronts in 2-D
and 3-D configurations136as well as extremely wide fronts with
dozens of cells137have been studied. The latter exhibit chaotic
behavior much like the intermittency found in fluid turbulence.
Experimental studies138of the iodate-arsenite system in a gelled
medium have shown that front instabilities occur when the
iodide autocatalyst is complexed byR-cyclodextrin, which
results in a reduction of its effective diffusivity.
When reactions are accompanied by significant density

changes, due to either heat evolution or differences in density
of the reactant and product species, convection may play an
important role in front behavior. Convective effects have been
studied in a number of systems, such as the HNO3-Fe(II)139
and iodate-arsenite140 reactions, and a theory for reaction-
diffusion-convection behavior, including such features as
double-diffusive convection, has been advanced by Pojman et
al.141 The iodate-arsenite reaction has been particularly useful
in studies of the onset of convection.142 Theoretical analyses
have established critical parameters for the first appearance of
convection, and some of the nonlinear behavior following the
onset has been characterized.143 Recent studies of convective
fronts in the chlorite-sulfite system have revealed oscillatory
velocities when an acidity gradient is imposed in the reaction
mixture.144

Propagating polymerization fronts have been studied by
Pojman and co-workers.145-147 These are similar to propagating

flames, where exothermic heat release initiates reaction ahead,
but with heat sensitive free-radical initiators that trigger poly-
merization. Fronts based on addition polymerizations in un-
stirred solutions of methacrylic acid and benzoyl peroxide146

occur with convective instabilities that give rise to pulsing
propagation and the formation of fingers. Fronts have also been
studied in a solid-state system consisting of a mixture of
powdered acrylamide and a free-radical initiator such as benzoyl
peroxide or azobis(isobutyronitrile) (AIBN).147

Oscillatory chemical systems, such as the BZ reaction, display
more complex waves known asreaction-diffusion pulses.124

When the reactant concentrations of an oscillatory reaction are
such that the system is nonoscillatory butexcitable, a small
perturbation beyond some threshold causes the equivalent of
an oscillation to occur. In an unstirred distributed system, the
oscillation becomes a traveling concentration disturbancesa
propagating pulseswhich moves through the steady state
reaction mixture, returning the system to that state behind the
wave. Such chemical systems are examples ofexcitable media,
which play an important role in biological contexts such as the
heart muscle.148

Chemical waves in excitable reaction mixtures give rise to
spectacular spatiotemporal patterns.149,150 In effectively two-
dimensional media, such as thin films of solution, successive
waves emanate from pacemaker sources to form target patterns,
like those shown in the top panel of Figure 1. When waves
are broken, either mechanically or by some other means, the
free ends curl up to form spirals, filling the medium with patterns
like those shown in the bottom panel of Figure 1. Spiral waves
rotate at a frequency determined by the characteristics of the
medium.
There have been many theoretical and experimental studies

of wave behavior in excitable chemical media,150most involving
the BZ reaction. The features of chemical waves in two-
dimensional media were first illustrated in the seminal papers
by Zhabotinsky.11 Winfree151 began his extensive studies of
spiral waves at about the same time, and the first photos of BZ
spirals were published, independently, by Winfree and Zhabot-
insky in 1971. Field and Noyes129 showed that the wave
propagation velocity is given by a Fisher-Kolmogorov descrip-
tion and related this to parameters of the FKN mechanism.
Keener and Tyson152 characterized the dispersion relation for
successive waves, giving the dependence of velocity on period,
and wave concentration profiles were measured by Wood and
Ross153 using a linear photodiode array.
One of the most remarkable developments to emerge from

studies of excitable chemical media has been the characterization
of complex spiral wave behavior. Winfree151 noted in an early
study that the core around which the spiral rotates may not be
stationary and termed this behavior “meandering”. The complex
behavior of spiral waves remained uncharacterized for more than
a decade until digital imaging techniques, introduced by Mu¨ller,
Plesser, and Hess,154 allowed precision measurements of the
spiral core. A number of subsequent investigations showed that,
depending on the “excitability” of the medium, the tip of the
spiral may trace out a simple circular path or a variety of
intricate “flower” patterns.155 Theoretical studies paralleled the
experimental developments and laid the foundations for under-
standing the complex dynamical behavior.156

The effects of inhomogeneities on wave behavior are
important in the cellular excitable media of biological systems.
The most significant behavior arising from medium inhomo-
geneity is the spontaneous appearance of spiral waves. In
homogeneous media, such as solutions of the BZ reaction, spiral
waves do not appear spontaneously but must be deliberately

Figure 9. Concentration profile of autocatalystâ in a patterned front
arising from cubic autocatalysis with the ratio of the diffusivities of
the reactant to autocatalyst equal to 5. Reprinted with permission from
ref 135. Copyright 1993 American Institute of Physics.
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created, typically by either physically or chemically inducing
wave breaks.11,151 Spirals may also appear with special initial
conditions such as cross-field stimulation157 or wave initiation
in the vulnerable refractory region of a preceding wave.158

Studies of the BZ reaction with the catalyst loaded on ion-
exchange beads159 or printed on membranes in specific pat-
terns160 have shown that interacting regions with different
excitabilities give rise to the spontaneous appearance of spiral
waves. This may occur at spontaneous wave initiations in the
vulnerable refractory region of another wave,160 as recently
shown in studies of BZ waves on catalyst-loaded Nafion
membranes.161 Patterned excitable media also give rise to global
anisotropy in wave propagation that reflects the local cellular
geometry, such as the hexagonal waves on the checkerboard
grid of triangles shown in Figure 10. Detailed studies of the
effects of local inhomogeneities on global wave behavior have
also been carried out with the Pt-CO system by Graham et
al.,162,163where complex boundaries and patterns were created
by photolithography.
The transverse coupling of chemical waves has been studied

in several different configurations. Waves on the surfaces of a
ferroin-loaded Nafion membrane immersed in a BZ solution
couple via transport of the autocatalyst through the membrane.164

This coupling gives rise to entrainment of the wave behavior
on both membrane surfaces as well as spontaneous spiral
sources. Modeling studies of transverse coupling of chemical
waves have demonstrated that exceedingly complex bifurcation
sequences arise, even in one-dimensional configurations.165,166

Communication between chemical waves has also been studied
in layers of chromatographic medium saturated with BZ
solution.167,168 In this configuration, two separate wave patterns
appear, one on the top and the other on the bottom of the layer.
Modeling studies have shown that a nonmonotonic excitability
profile separates the top and bottom patterns, which interact to
form intricate crossing wave patterns.169

The propagation of chemical waves through precision-bore
capillary tubes provides a means to directly measure the critical
nucleation size in excitable media.170 A wave enters and travels
through a capillary tube immersed in a BZ solution and forms
a hemisphere of excited solution at the exit. When the tube
diameter is greater than a critical value, the excitation serves to
initiate a wave; otherwise, the excitation collapses and no wave
is initiated. The critical nucleation size from such experiments
is in good agreement with theoretical predictions152and indirect
measurements based on the wave velocity dependence on front
curvature.171 Combinations of two or more capillary tubes can
be configured into logic gates, based on input and output signals
in the form of chemical waves.172 An example of an AND gate
is shown in Figure 11, which is comprised of two tubes with
radii slightly smaller than that corresponding to the critical
nucleation radius of the chemical medium. The tubes are
positioned such that two waves exiting simultaneously give rise
to wave initiation, while a single wave in either tube collapses
at the exit. Many other logic gates are possible, and a suitable
collection could be assembled into chemical wave circuitry for
computational tasks. The propagation of a single wave through
a maze can form the basis of an algorithm for determining
minimum-length paths.173 Optimal pathways through complex
labyrinths prepared with a membrane-BZ system have been
determined from time-lapse video information on chemical wave
position.174 Propagating waves in excitable media provide an
interesting and potentially useful alternative to traditional
methods for determining optimal paths and point to possible
mechanisms for self-optimization in biological systems. Ross
and co-workers73,175 have carried out extensive theoretical
studies of “chemical computers” based on reactor systems
coupled by mass flow.
The oxidation of CO on single-crystal Pt has proven to be

an extraordinarily rich system for studies of spatiotemporal
behavior.176 The surface-catalyzed oxidation takes place with
a reconstruction of the Pt surface, and the associated propagating
waves give rise to target and spiral patterns.177 The wave
patterns have been visualized with remarkable clarity using

Figure 10. Propagating waves on BZ membrane with cellular
inhomogeneities. The catalyst patterns appear as the background;
unloaded and loaded regions are white and red, respectively. The
triangular patterns give rise to hexagonal wave propagation. Image area
) 14.5 cm2. The positions of the waves, obtained by subtraction of
successive video frames, were superimposed on the background image,
with blue assigned to the wave front and violet assigned to the wave
back. Reprinted with permission from ref 160. Copyright 1995
American Association for the Advancement of Science.

Figure 11. Subtraction images showing chemical waves at 10 s
intervals traveling inside capillary tubes of 50µm radius. Input of waves
in both tubes with output in gap demonstrates AND gate behavior.
Field of view: 0.38 mm× 2.58 mm in top four panels and 0.64 mm
× 2.58 mm in bottom panel. The gap between the tube exits is 180
µm. Reprinted with permission from ref 172. Copyright American
Institute of Physics.
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photoemission electron microscopy, which allows real-time
spatial imaging.178 Several types of spatiotemporal behaviors
are displayed by this system that have not been observed in
other excitable media. These arise from the participation of
the surface reconstruction as well as global coupling and include
soliton-like waves, which appear to pass through one another,
and standing waves.179

VIII. Turing Patterns

The study of traveling chemical waves has provided striking
analogues of, and some insights into, similar phenomena in other
systems, particularly biological systems. There exist in living
systems, as well as in geological and astronomical systems,
striking stationary spatial patterns, and a great deal of recent
research has focused on the study of stationary patterns in
reaction-diffusion systems. The fundamental idea behind this
work was formulated in 1952 by the British mathematician Alan
Turing in a paper entitled “The Chemical Basis of Morpho-
genesis”.180 Turing showed by mathematical analysis and
specific, though chemically unrealistic, models that a reaction-
diffusion system can have a spatially uniform steady state that
is stable to homogeneous perturbations but that allows certain
spatially nonuniform perturbations to grow. The system then
evolves into a stationary, patterned state, now known as a Turing
pattern or Turing structure, that is stable to both homogeneous
and inhomogeneous perturbations. The spatial structure, typi-
cally a set of repeating stripes or spots, possesses an intrinsic
wavelength that depends only upon the kinetics and concentra-
tions of the reaction, not upon the geometry of the system.
Turing’s ideas were widely embraced by theorists, particularly

those interested in biological pattern formation,181 to account
for a variety of pattern formation phenomena in systems ranging
from astrophysical to economic. Despite the theoretical interest
in them, Turing patterns remained experimentally elusive for
nearly 40 years until De Kepper and co-workers,182 working
with the chlorite-iodide-malonic acid (CIMA) reaction183 in
an unstirred continuous flow gel reactor, produced striking
experimental evidence for their existence. Pattern formation
in precipitation reactions has also been suggested as an example
of Turing patterns.184

To understand how the Turing patterns arise, and why it took
so long for them to be found experimentally, it is necessary to
examine the problem more closely. If we consider a reaction-
diffusion system with two concentration variables, we can
perform a linear stability analysis to determine the conditions
under which the steady state will be stable to homogeneous
perturbations but unstable to inhomogeneous perturbations.
Qualitatively, we find181 first that one of the species, the
actiVator x, must increase the rate of its own production, i.e.,
at the steady state, adding morex causes∂x/∂t to increase, while
the inhibitor y must cause the rate of its own production to
decrease. A second necessary condition is that the inhibitor
must diffuse more rapidly than the activator:

where the necessary ratioc is determined by the kinetics
constants and the steady state concentrations and is typically in
the range of 6-10.
Condition 4 contains the explanation for why Turing patterns

were so difficult to find experimentally. In aqueous solution,
essentially all small molecules and ions have diffusion constants
that lie within a factor of two of 2× 10-5 cm2 s-1. Thus,
obtaining a sufficiently high value ofr is extremely difficult,
perhaps impossible, in typical chemical systems.

What was it about the CIMA system that made it possible to
get around this problem, and what insights can be derived from
this success? The chemistry of the CIMA reaction can be
summarized by three component processes and their corre-
sponding empirical rate laws:185

MA + I2 f IMA + I- + H+ (5)

r1 ) k1a[MA][I 2]/(k1b + [I 2])

ClO2 + I- f ClO2
- + 1/2I2 (6)

r2 ) k2[ClO2][I
-]

ClO2
- + 4I- + 4H+ f Cl- + 2I2 + 2H2O (7)

r3 ) k3a[ClO2
-][I -][H+] + k3b[ClO2

-][I -][I 2]/(R + [I-]2)

where IMA is monoiodinated malonic acid, CHI(COOH)2, and
R is a phenomenological parameter that determines the iodide
concentration above which the last term in the rate law of
reaction 7 becomes self-inhibitory in the reactant I-. Experi-
mental and mathematical analysis of the CIMA reaction and
its cousin, the CDIMA (chlorine dioxide-iodine-malonic acid)
reaction, reveals that, to a good approximation, changes in the
concentrations of species other than ClO2

- and I- are relatively
slow, and that thek3a term in reaction 7 is much smaller than
thek3b term, so that the kinetics of the CIMA reaction are well
described by the two-variable model186

where X) I-, the activator, and Y) ClO2
-, the inhibitor. The

resulting rate laws can be nondimensionalized to yield a simple
two-variable model

The model (11)-(12) can be shown to have a unique steady
state,u ) a/5, V ) 1 + a2/25, which is stable if

Equation 13 represents a condition on the concentrations of
malonic acid, iodine, and chlorine dioxide in order for the system
under flow conditions to have a stable steady state. If this
condition is violated, periodic temporal oscillations occur, and
no Turing patterns are possible.
If condition 13 holds, we must still satisfy condition 4 in

order to obtain Turing patterns. Here, serendipity enters, as it
has so often in this field. In order to increase the color contrast
between the oxidized and reduced states of the CIMA system,
Castets et al.182 employed starch as an indicator. The familiar
deep blue-black color arises from reversible formation of the
starch-triiodide complex. The complex is immobile, since the
large starch molecules cannot traverse the gel, and it is
unreactive. If we picture the starch molecules as being dispersed
randomly throughout the gel, the diffusion of the activator iodide
ions resembles a random walk through a medium strewn with

Dy/Dx ) r > c> 1 (4)

f X r1 ) k1′, k1′ ) k1a[MA] (8)

X f Y r2 ) k2′[X], k2′ ) k2[ClO2] (9)

4X + Y f r3 ) k3′[X][Y]/( R + [X] 2), k3′ ) k3b[I 2]
(10)

du/dτ ) a-u+ 4uV/(1+ u2) (11)

dV/dτ ) b[u- uV/(1+ u2)] (12)

b< 3a/5- 25/a (13)
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traps into which an iodide ion can fall and remain until the
complex breaks up. The net result is that the effective diffusion
rate of I- decreases significantly, by a factor that depends upon
the concentration of starch and the stability constant of the
complex. The starch thus provides a way of making iodide
diffuse significantly slower than chlorite, satisfying condition
4, and making possible the emergence of Turing patterns.
Typical patterns are shown in Figure 12.
The above qualitative argument can be made more rigorous

and generalized into an approach for designing other systems
that can exhibit Turing patterns.187 If one has an activator-
inhibitor system with a homogeneously stable steady state, one
seeks a complexing agent that reversibly forms an immobile,
unreactive complex with the activator. If the stability constant
for complex formation isK and the concentration of complexing
agent isC, then the time scales for the evolution and diffusion
of the activator and inhibitor become separated by a factorσ )
1 + KC. The composition of the steady state is unchanged,
but its stability is modified. In Figure 13 we show a bifurcation
diagram for the CDIMA reaction withr set at the physically
reasonable value of 1.5. We see that in the absence of
complexation (σ ) 1) the solid Hopf curve lies above the dashed
Turing curve, so that as we lowerb by changing the reactant
composition, oscillation sets in before Turing patterns can arise.
Whenσ is made sufficiently large, e.g., 10, Turing patterns occur
in the region below the dashed and above the solid line.
The Turing patterns observed experimentally occur as a two-

dimensional layer in a three-dimensional medium. Typically,
different reactants are fed into the two ends of a cylindrical
slab of gel, and the conditions for Turing patterns are satisfied
only in a relatively thin strip parallel to the gel faces and
perpendicular to the concentration gradients that are set up as
a result of the input flows and diffusion of species within the
gel. Detailed calculations on the model equations (11) and (12)
supplemented with diffusion terms yield accurate predictions
of the experimental location of the<1 mm thick Turing pattern
layer in a gel disk 2 cm in diameter containing the ingredients
of the CDIMA reaction.188 The results show that the conditions
for (a) stability of the steady state to homogeneous perturbation
and (b) its instability to inhomogeneous perturbation are satisfied
only in a portion of the medium so narrow as to permit only a
single layer of patterns to occur. Model calculations189suggest
that if three-dimensional patterns were to exist, the stripes or

spots that comprise them would arrange themselves in ways
resembling the packing of atoms or molecules in a crystal.
The calculation of the location of Turing patterns in the gel

medium also produces an estimate of the reactant concentrations
in the region where Turing patterns can occur. One might think
that, if this composition were established in auniformmedium,
it might be possible to produce transient Turing patterns in a
gradient-free, closed system. Lengyel et al.190demonstrated in
the CDIMA system that Turing patterns can indeed be formed
in this fashion.
While most work in this area has focused on the character-

istics of stationary Turing patterns, there are important dynamic
questions as well. Turing180 actually predicted a second type
of bifurcation that leads from a stable homogeneous steady state
to traveling wave patterns. Evidence for its occurrence in a
model chemical system has recently been found.191 Recent
experiments192 on the ferrocyanide-iodate-sulfite system193

show the existence of a variety of stationary and traveling
patterns. Perhaps most interesting is the observation that

Figure 12. Turing patterns in the CIMA reaction.

Figure 13. Bifurcation curves in a model of the CDIMA reaction in
the presence of an immobile complexing agent (e.g., starch) withc )
1.5. Solid lines indicate Hopf bifurcation curves above which steady
state is stable. Oscillatory state is stable below this curve. Dashed line,
which is independent ofσ, indicates Turing bifurcation curve.
Homogeneous steady state is unstable to inhomogeneous perturbations
below this curve. Reprinted with permission from ref 187. Copyright
1992 National Academy of Sciences.
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patterns evolve by the growth, elongation, and splitting of spots
in a fashion that is strikingly reminiscent of the reproduction
of single-celled organisms.

IX. Outlook

It has been well over 150 years since chemists began to notice
that chemical reactions often occur with surprising dynamical
complexity. For most of this long history, however, there has
been a decided resistance in the chemistry community to
accepting such notions as chemical oscillations. Today, thanks
to several decades of intense experimental and theoretical
research activity, we know that oscillatory behavior is not only
possible but, indeed, common in chemical systemssand it may
well be the norm when we include the chemistry of living
systems. Nonetheless, chemistry colleagues may still ask, “But
is this stuff good for anything?” The answer is, emphatically,
“Yes!”
Over the past two decades, nonlinear dynamics has flourished

in the physical and biological sciences because it is seen to be
a powerful tool for understanding complexity in nature. Chemi-
cal systems have played an important role in advancing the field
because they are particularly amenable to experimental and
theoretical analyses and, hence, serve as ideal model systems.
Perhaps the greatest success along these lines can be found in
the application of the principles of excitable media to cardiology.
Studies, pioneered by Winfree, on wave behavior in the BZ
reaction and other excitable media have led to an understanding
of the role spiral waves play in heart maladies such as
tachycardia and fibrillation.194 It would not be an overstatement
to say that these studies have resulted in a fundamental paradigm
shift in cardiology.
Opportunities abound for using the principles of nonlinear

chemical dynamics to better understand the dynamical behavior
of living systems. Recently discovered calcium waves in the
cytoplasm of frog oocytes,195 for example, give rise to spec-
tacular spiral behavior much like that seen in the BZ reaction.
What function these waves serve is not known, nor is much
known about their underlying reaction-diffusion dynamics;
however, their origin undoubtedly lies in oscillatory behavior
involving calcium induced calcium release.196 Simple front-
type calcium waves197 are known to occur on the surface of
oocytes in many different species following fertilization,198and
it seems likely that intercellular spiral waves will be found in
many species as well. Another exciting opportunity lies in
developing an understanding of the dynamics of the cell
cyclesan important oscillatory reaction, indeed! Recent studies
by Tyson and Novak199have pinpointed key intermediate species
in the “chemical” mechanism, allowing the construction of a
model that generates behavior in remarkably good agreement
with experimental measurements. This model might well be
the beginnings of a “mathematical model of the cell”, which
could provide insights into living systems in much the same
spirit as mathematical modeling of highly complex systems such
as the atmosphere.200

While applications to biological systems seem to be a
“natural” for future opportunities in nonlinear dynamics, it is
important not to lose sight of the impact fundamental studies
have hadsand will haveson “core” chemistry. Studies of the
Pt-CO system,176 for example, have demonstrated that spatio-
temporal behavior must be taken into account for a complete
understanding of the surface-catalyzed reaction. It is likely that
the behavior characterized in these studies will be applicable
to many other systems involving surface catalysis, some with
great practical importance. Studies of model systems in
electrochemistry101offer equally important spinoffs, with recent

studies showing that spatiotemporal behavior may also play an
important role in many electrochemical processes.201 Control
techniques for stabilizing dynamical states have great potential
for practical applications in chemistry.110 These methods allow
real-time manipulation of a chemical process by targeting and
stabilizing desired dynamical states. Applications of control
could potentially improve the performance of complex chemical
manufacturing processes as well as dynamical processes in
related fields such as combustion chemistry.
Perhaps the most important outcome stemming from studies

of chemical oscillations, patterns, and chaos is the expansion
of chemistry itself. The design and development of dozens of
new oscillatory chemical reactions not only supplied dynamicists
with new and different systems for characterization, but a great
deal of new chemistry has been developed in the process.
Oxyhalogen chemistry as well as the chemistry of sulfur,
nitrogen, peroxide, manganese, and many metal ion complexes
has seen enormous growth in terms of basic chemical under-
standing. Studies of propagating waves and pattern formation
have shown how chemical reactions are transformed when they
are intimately coupled with diffusion or other forms of transport.
We also now know that it may be impossible to predict the
future behavior of a chemical system if it contains elements of
feedback appropriate for chaotic dynamics.
Studies of oscillations, patterns, and chaos in chemical

systems constitute an exciting new frontier of chemistry. Still
in its adolescence, the field holds enormous promise and
opportunity for unraveling the chemical complexities of nature.
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